Study of the effects of a hypoxic microenvironment on human keratinocytes in vitro and its correlation with microenvironmental alterations in oral lichen planus pathology
PDF (Spanish)
PDF
HTML (Spanish)

Keywords

hypoxia
oral lichen planus
cancer
keratinocytes

How to Cite

Study of the effects of a hypoxic microenvironment on human keratinocytes in vitro and its correlation with microenvironmental alterations in oral lichen planus pathology. (2022). Odontoestomatología, 24(40), 1-25. https://doi.org/10.22592/ode2022n40e223

Abstract

Hypoxia is a fundamental factor in the process of tumor genesis, as well as in precursor pathologies of cancer, such as Oral Lichen Planus (OLP). 

Objective: To determine if it is possible to establish a correlation between the alterations that normal keratinocytes suffer in a hypoxic microenvironment in vitro and alterations that appear in the keratinocytes in the epithelium of the oral mucosa in the context of OLP pathology. 

Methods: Morphological changes were studied by phase contrast microscopy, and the detection of markers associated with hypoxia of human keratinocytes (HaCaT), as an oral cell model, in a hypoxic microenvironment generated by the variant of the method "Hypoxia induced by coverslips". 

Results: Using confocal microscopy, the presence of hypoxia markers GLUT-1 and Hipoxyprobe was observed in HaCaT cell cultures exposed to a hypoxic microenvironment. In addition, the presence of the GLUT-1 marker was observed by immunohistochemistry in human epithelial tissue derived from biopsies of OLP pathology. 

Conclusions: A correlation was established between the alterations detected in human keratinocytes induced in a hypoxic microenvironment in vitro and the alterations detected in vivo in epithelial tissue of the oral mucosa.

PDF (Spanish)
PDF
HTML (Spanish)

References

1.Peng Q, Zhang J, Ye X, Zhou G. Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation? Expert Review of Clinical Immunology 2017, 13(6), 635–643. https://doi.org/10.1080/1744666X.2017.1295852.

2.Eltzschig H. K., & Carmeliet P. Hypoxia and Inflammation. New England Journal of Medicine, 2011 364(7), 656–665. https://doi.org/10.1056/NEJMra0910283.

3.Marín-Hernández Á. El factor inducido por la hipoxia-1 (HIF-1) y la glucólisis en las células tumorales. Revista de Educación Bioquímica 2009, 28(2), 42–51.

4.Wong, W. J., Richardson, T., Seykora, J. T., Cotsarelis, G., & Simon, M. C. Hypoxia-inducible factors regulate filaggrin expression and epidermal barrier function. Journal of Investigative Dermatology 2015; 135(2), 454–461. https://doi.org/10.1038/jid.2014.283.

5.Kujan, O., Farah, C. S., & Johnson, N. W. Oral and oropharyngeal cancer in the Middle East and North Africa. Translational Research in Oral Oncology 2017; 2, 2057178X1769848. https://doi.org/10.1177/2057178x17698480

6.Becelli, R., Renzi, G., Morello, R., & Altieri, F. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer. Journal of Craniofacial Surgery 2007; 18(5), 1051–1054. https://doi.org/10.1097/scs.0b013e3180de63eb.

7.Jones, K. B., & Klein, O. D. Oral epithelial stem cells in tissue maintenance and disease: The first steps in a long journey. International Journal of Oral Science 2013; 5(3), 121–129. https://doi.org/10.1038/ijos.2013.46.

8.Bermejo Fenoll A, López-Jornet P. Liquen plano oral. Naturaleza, aspectos clínicos y tratamiento RCOE 2004, 9(4)

9.Cheng, Y. S. L., Gould, A., Kurago, Z., Fantasia, J., & Muller, S. Diagnosis of oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2016; 122 (3), 332–354. https://doi.org/10.1016/j.oooo.2016.05.004.

10.Seo, M. D., Kang, T. J., Lee, C. H., Lee, A. Y., & Noh, M. HaCaT keratinocytes and primary epidermal keratinocytes have different 45 transcriptional profiles of cornified envelope-associated genes to T helper cell cytokines. Biomolecules and Therapeutics 2012; 20(2), 171–176. https://doi.org/10.4062/biomolther.2012.20.2.171.

11.Ge, Y., Xu, Y., Sun, W., Man, Z., Zhu, L., Xia, X., Zhao, L., Zhao, Y., & Wang, X. The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-κB signaling pathway activation in oral 43 lichen planus. Gene 2012; 508(2), 157–164. https://doi.org/10.1016/j.gene.2012.07.045.

12.Pitts, K. R., & Toombs, C. F. Coverslip hypoxia: A novel method for studying cardiac myocyte hypoxia and ischemia in vitro. American Journal of Physiology - Heart and Circulatory Physiology 2004; 287(4 56-4), H1801–H1812. https://doi.org/10.1152/ajpheart.00232.2004

13.Arocena, M., Landeira, M., Di Paolo, A., Silva, A., Sotelo-Silveira, J., Fernández, A., & Alonso, J. Using a variant of coverslip hypoxia to visualize tumor cell alterations at increasing distances from an oxygen source. Journal of Cellular Physiology 2019; 234(10), 16671–16678. https://doi.org/10.1002/jcp.28507.

14.Greenspan, P., & Fowler, S. D. Spectrofluorometric studies of the lipid probe, nile red. Journal of Lipid Research, 1985; 26(7), 781–789.

15.Michel, S., Schmidt, R., Shroot, B., & Reichert, U. Morphological and biochemical characterization of the cornified envelopes from human epidermal keratinocytes of different origin. J Investigative Dermatol 1988; 91(1), 16–21. https://doi.org/10.1111/1523- 1747.ep12463281.

16.Cousins, F. L., Murray, A. A., Scanlon, J. P., & Saunders, P. T. K. HypoxyprobeTM reveals dynamic spatial and temporal changes in hypoxia in a mouse model of endometrial breakdown and repair. BMC Research Notes 2016; 9(1), 1–5. https://doi.org/10.1186/s13104-016-1842-8.

17.Zieseniss A. Hypoxia and the modulation of the actin cytoskeleton - emerging interrelations. Hypoxia (Auckl). 2014 Mar 25;2:11-21. doi: 10.2147/HP.S53575.

18.Nguyen, V. T., Ndoye, A., Hall, L. L., Zia, S., Arredondo, J., Chernyavsky, A. I., Kist, D. A., Zelickson, B. D., Lawry, M. A., & Grando, S. A. Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. Journal of Cell Science 2001; 114(6), 1189–1204.

19.Zhang, X., Saarinen, A. M., Hitosugi, T., Wang, Z., Wang, L., Ho, T. H., & Liu, J. Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia. ELife 2017; 6, 1–24. https://doi.org/10.7554/eLife.31132.

20.Rademakers, S. E., Lok, J., van der Kogel, A. J., Bussink, J., & Kaanders, J. H. A. M. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 2011; 11. https://doi.org/10.1186/1471-2407-11-167.

21.de Carvalho Fraga CA, Alves LR, Marques-Silva L, de Sousa AA, Jorge AS, de Jesus SF, Vilela DN, Pinheiro UB, Jones KM, de Paula AM, Guimarães AL. High HIF-1α expression genotypes in oral lichen planus. Clin Oral Investig. 2013; 17(9):2011-5. doi: 10.1007/s00784-013-0920-8. Epub Jan 19.