Fisiopatología de la enfermedad COVID-19

  • BRUNO MANTA Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República. Las Heras 1925, 11600, Montevideo, Uruguay. http://orcid.org/0000-0001-8366-8935
  • ARMEN G Sarkisian Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República. Las Heras 1925, 11600, Montevideo, Uruguay. http://orcid.org/0000-0002-0935-3326
  • BARBARA GARCIA FONTANA Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República. Las Heras 1925, 11600, Montevideo, Uruguay. https://orcid.org/0000-0002-9007-8148
  • VANESA PEREIRA PRADO Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República. Las Heras 1925, 11600, Montevideo, Uruguay. https://orcid.org/0000-0001-7747-6718
Palabras clave: SARS-Cov-2, fisiopatología, COVID-19, ECA2

Resumen

La enfermedad por coronavirus es una infección respiratoria causada por el virus SARS-CoV 2, el cual genera una cascada de eventos sistémicos, afectando diferentes órganos y tejidos. El entendimiento de la fisiopatología del COVID-19 es indispensable no solo al momento de brindar tratamiento a los pacientes, sino que también para comprender las causas de las complicaciones que presentan un número importante de pacientes recuperados. El objetivo de este trabajo es presentar una revisión actualizada de los efectos de la infección en diferentes órganos y sistemas principales que sea de utilidad como material de referencia para profesionales y estudiantes de la salud. Para ello se realizó una búsqueda bibliográfica en los portales PubMED, Scielo, Google Scholar, Cochrane y Springer Link, así como en las bases de repositorios científicos pre-publicación bioRxiv (“bioarchives”) y medRxiv (“med-archives”) y sobre un total de cerca de 200 mil artículos, se seleccionaron 100 artículos para esta revisión en base a su relevancia o sugerencias de parte de profesionales especializados. 

Citas

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727–33.
2. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020 Jul;26(7):1017–32.
3. Tabary M, Khanmohammadi S, Araghi F, Dadkhahfar S, Tavangar SM. Pathologic features of COVID-19: A concise review. Pathol Res Pract. 2020 Sep;216(9):153097.
4. Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021 Mar;19(3):141–54.
5. CDC. El COVID-19 y su salud [Internet]. Centers for Disease Control and Prevention. 2020 [cited 2021 Apr 30]. Available from: https://espanol.cdc.gov/coronavirus/2019- ncov/need-extra-precautions/people-with-medical-conditions.html
6. Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021 Mar;17(3):135–49.
7. Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol. 2020;177(21):4825–44.
8. Ryan PM, Caplice N. COVID-19 and relative angiotensin-converting enzyme 2 deficiency: role in disease severity and therapeutic response. Open Heart. 2020 Jun;7(1).
9. Lim S, Bae JH, Kwon H-S, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021 Jan;17(1):11–30.
10. Bae S, Kim SR, Kim M-N, Shim WJ, Park S-M. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: a systematic review and meta-analysis. Heart. 2021 Mar 1;107(5):373–80.
11. Logette E, Lorin C, Favreau CPH, Oshurko E, Coggan JS, Casalegno F, et al. Elevated blood glucose levels as a primary risk factor for the severity of COVID-19. medRxiv. 2021 Jan 1;2021.04.29.21256294.
12. Li M-Y, Li L, Zhang Y, Wang X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020 Apr 28;9(1):45.
13. GACH - Presidencia de la República; 2020, disponible en
https://www.presidencia.gub.uy/gach/
14. GUIAD-COVID-19; 2020, disponible en https://GUIAD-COVID.github.io/
15. Burrell CJ, Howard CR, Murphy FA. Coronaviruses. Fenner Whites Med Virol. 2017;437–46.
16. Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, et al. The Origin of COVID-19 and Why It Matters. Am J Trop Med Hyg. 2020 Jul 22;103(3):955– 9.
17. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem. 2020 Sep 11;295(37):12910–34.
18. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020 Dec 1;41(12):1100–15.
19. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020 Sep;17(9):543–58.
20. Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM, et al. Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020 Jun 8;53(5):514-529.e3.
21. Xu J, Chu M, Zhong F, Tan X, Tang G, Mai J, et al. Digestive symptoms of COVID-19 and expression of ACE2 in digestive tract organs. Cell Death Discov. 2020 Aug 11;6(1):1–8.
22. Huang N, Pérez P, Kato T, Mikami Y, Okuda K, Gilmore RC, et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med. 2021 Mar 25.
23. Wang J, Meng W. COVID-19 and diabetes: the contributions of hyperglycemia. J Mol Cell Biol. 2020 Dec 1;12(12):958–62.
24. Braun F, Lütgehetmann M, Pfefferle S, Wong MN, Carsten A, Lindenmeyer MT, et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet Lond Engl. 2020 Aug 29;396(10251):597–8.
25. Cano F, Gajardo M, Freundlich M, Cano F, Gajardo M, Freundlich M. Eje Renina Angiotensina, Enzima Convertidora de Angiotensina 2 y Coronavirus. Rev Chil Pediatría. 2020 Jun;91(3):330–8.
26. Pérez PC, Fernández LM, García-Cosio MD, Delgado JF. Sistema renina-angiotensina aldosterona y COVID19. Implicaciones clínicas. Rev Esp Cardiol Supl. 2020;20:27–32.
27. Robbins & Cotran Pathologic Basis of Disease - 10th Edition [Internet]. [cited 2021 Jul 24]. Available from: https://www.elsevier.com/books/robbins-and-cotran-pathologic basis-of-disease/kumar/978-0-323-53113-9
28. Wang M, Xiong H, Chen H, Li Q, Ruan XZ. Renal Injury by SARS-CoV-2 Infection: A Systematic Review. Kidney Dis. 2021;7(2):100–10.
29. Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. The Lancet. 2021 May 1;397(10285):1603–5.
30. Mason RJ. Thoughts on the alveolar phase of COVID-19. Am J Physiol-Lung Cell Mol Physiol. 2020 Jun 3;319(1):L115–20.
31. Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, et al. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol. 2021 Jan;21(1):49–64.
32. Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021 Apr 29.
33. Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias S da SG, Fintelman Rodrigues N, Sacramento CQ, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 2021 Mar 1;7(1):1–12.
34. Peiris JSM, Yuen KY, Osterhaus ADME, Stöhr K. The Severe Acute Respiratory Syndrome. N Engl J Med. 2003 Dec 18;349(25):2431–41.
35. Erdinc B, Sahni S, Gotlieb V. Hematological manifestations and complications of COVID-19. Adv Clin Exp Med Off Organ Wroclaw Med Univ. 2021 Jan;30(1):101–7.
36. Terpos E, Ntanasis‑Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834–47.
37. Tavares C de AM, Avelino-Silva TJ, Benard G, Cardozo FAM, Fernandes JR, Girardi ACC, et al. Alterações da ECA2 e Fatores de Risco para Gravidade da COVID-19 em Pacientes com Idade Avançada. Arq Bras Cardiol. 2020 Oct 13;115(4):701–7.
38. Tsitsiklis A, Zha B, Byrne A, DeVoe C, Levan S, Rackaityte E, et al. Impaired immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19. Res Sq. 2021 Apr 23;rs.3.rs-380803.
39. Estimation of total mortality due to COVID-19. 2021. Available from: http://www.healthdata.org/special-analysis/estimation-excess-mortality-due-covid-19- and-scalars-reported-covid-19-deaths
40. Reporte 10: Casos graves, críticos y muertes entre infectados por SARS-CoV-2 por franja etaria, GUIAD-COVID-19. 2021.Available from: https://GUIAD
COVID.github.io/publication/nota10/
41. Adu-Amankwaah J, Mprah R, Adekunle AO, Noah MLN, Adzika GK, Machuki JO, et al. The cardiovascular aspect of COVID-19. Ann Med. 2021 Jan 1;53(1):227–36.
42. Wichmann D, Sperhake J-P, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann Intern Med [Internet]. 2020 May 6 [cited 2021 May 30]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240772/
43. Agbuduwe C, Basu S. Haematological manifestations of COVID-19: From cytopenia to coagulopathy. Eur J Haematol. 2020;105(5):540–6.
44. Godoy LC, Goligher EC, Lawler PR, Slutsky AS, Zarychanski R. Anticipating and managing coagulopathy and thrombotic manifestations of severe COVID-19. CMAJ. 2020 Oct 5;192(40):E1156–61.
45. Mueller C, Giannitsis E, Jaffe AS, Huber K, Mair J, Cullen L, et al. Cardiovascular biomarkers in patients with COVID-19. Eur Heart J Acute Cardiovasc Care. 2021 Mar 1;10(3):310–9.
46. Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res. 2021 Apr 30;128(9):1323–6.
47. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019 May;15(5):288–98.
48. Sanchis-Gomar F, Lavie CJ, Mehra MR, Henry BM, Lippi G. Obesity and Outcomes in COVID-19: When an Epidemic and Pandemic Collide. Mayo Clin Proc. 2020 Jul 1;95(7):1445–53.
49. Pisabarro R, Gutierrez M, Bermúdez C, Prendez D, Recalde A, Chaftare Y, et al. Segunda Encuesta Nacional de Sobrepeso y Obesidad (ENSO 2) adultos (18-65 años o más). Rev Med Urug. 2009 Mar;25:14–26.
50. Ibarra A. Prevalencia y características clínicas de pacientes diabéticos ingresados en un hospital general. Arch Med Interna. 2015 Jul;37:57–60.
51. Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020 Jun;8(6):546–50.
52. Wijnant SRA, Jacobs M, Eeckhoutte HPV, Lapauw B, Joos GF, Bracke KR, et al. Expression of ACE2, the SARS-CoV-2 Receptor, in Lung Tissue of Patients With Type 2 Diabetes. Diabetes. 2020 Dec 1;69(12):2691–9.
53. Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, et al. New-Onset Diabetes in Covid-19. N Engl J Med. 2020 Aug 20;383(8):789–90.
54. Sathish T, Kapoor N, Cao Y, Tapp RJ, Zimmet P. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes Metab. 2021 Mar;23(3):870–4.
55. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequalae of COVID-19. Nature. 2021 Apr 22;1–8.
56. Scappaticcio L, Pitoia F, Esposito K, Piccardo A, Trimboli P. Impact of COVID-19 on the thyroid gland: an update. Rev Endocr Metab Disord. 2020 Nov 25;1–13.
57. Chen W, Tian Y, Li Z, Zhu J, Wei T, Lei J. Potential Interaction Between SARS-CoV-2 and Thyroid: A Review. Endocrinology [Internet]. 2021 Mar 1 [cited 2021 Apr 30];162(bqab004). Available from: https://doi.org/10.1210/endocr/bqab004
58. Galanopoulos M, Gkeros F, Doukatas A, Karianakis G, Pontas C, Tsoukalas N, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020 Aug 21;26(31):4579–88.
59. Elmunzer BJ, Spitzer RL, Foster LD, Merchant AA, Howard EF, Patel VA, et al. Digestive Manifestations in Patients Hospitalized With Coronavirus Disease 2019. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2021 Jul;19(7):1355- 1365.e4.
60. Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol. 2021 Apr;18(4):269–83.
61. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020 May 1;158(6):1831-1833.e3.
62. Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, et al. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front Immunol [Internet]. 2021 [cited 2021 Jul 25];0. Available from:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.686240/full
63. Yeoh YK, Zuo T, Lui GC-Y, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID 19. Gut. 2021 Apr;70(4):698–706.
64. COVID-19 and acute pancreatitis: examining the causality | Nature Reviews Gastroenterology & Hepatology [Internet]. [cited 2021 Jul 25]. Available from: https://www.nature.com/articles/s41575-020-00389-y
65. Solomon T. Neurological infection with SARS-CoV-2 — the story so far. Nat Rev Neurol. 2021 Feb;17(2):65–6.
66. Khan AR, Farooqui MO, Jatoi NN, Jawaid S, Mahdi D, Khosa F. Neurological Manifestations of SARS-CoV-2. The Neurologist. 2020 Dec 30;26(1):15–9.
67. Innes N, Johnson IG, Al-Yaseen W, Harris R, Jones R, Kc S, et al. A Systematic Review of Droplet and Aerosol Generation in Dentistry. medRxiv. 2020 Jan 1;2020.08.28.20183475.
68. Meleti M, Cassi D, Bueno L, Bologna-Molina R. COVID-19 diffusion and its impact on dental practice in distant countries with similar ethnic background. Oral Dis. 2021 Apr;27 Suppl 3:720–2.
69. Teo AKJ, Choudhury Y, Tan IB, Cher CY, Chew SH, Wan ZY, et al. Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-19 infection. Sci Rep. 2021 Feb 4;11(1):3134.
70. Frontiers | Potential Mechanisms for COVID-19 Induced Anosmia and Dysgeusia | Physiology [Internet]. [cited 2021 Apr 29]. Available from:
https://www.frontiersin.org/articles/10.3389/fphys.2020.01039/full
71. Sunavala-Dossabhoy G. Renin-angiotensin II-aldosterone axis in SARS-CoV-2- associated xerostomia. Oral Dis. 2020 Aug 7.
72. Marouf N, Cai W, Said KN, Daas H, Diab H, Chinta VR, et al. Association between periodontitis and severity of COVID-19 infection: A case–control study. J Clin Periodontol. 2021;48(4):483–91.
73. Ansari R, Gheitani M, Heidari F, Heidari F. Oral cavity lesions as a manifestation of the novel virus (COVID-19). Oral Dis. 2021 Apr;27 Suppl 3:771–2.
74. Brandini DA, Takamiya AS, Thakkar P, Schaller S, Rahat R, Naqvi AR. Covid-19 and oral diseases: Crosstalk, synergy or association? Rev Med Virol [Internet]. [cited 2021 May 30. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rmv.2226
75. Martín Carreras-Presas C, Amaro Sánchez J, López-Sánchez AF, Jané-Salas E, Somacarrera Pérez ML. Oral vesiculobullous lesions associated with SARS-CoV-2 infection. Oral Dis. 2021 Apr;27 Suppl 3:710–2.
76. Nuno-Gonzalez A, Martin-Carrillo P, Magaletsky K, Martin Rios MD, Herranz Mañas C, Artigas Almazan J, et al. Prevalence of mucocutaneous manifestations in 666 patients with COVID-19 in a field hospital in Spain: oral and palmoplantar findings. Br J Dermatol. 2021 Jan;184(1):184–5.
77. Iebba V, Zanotta N, Campisciano G, Zerbato V, Di Bella S, Cason C, et al. Profiling of oral microbiota and cytokines in COVID-19 patients. bioRxiv. 2020 Jan 1;2020.12.13.422589.
78. Patel J, Sampson V. The role of oral bacteria in COVID-19. Lancet Microbe. 2020 Jul;1(3):e105.
79. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post acute COVID-19 syndrome. Nat Med. 2021 Apr;27(4):601–15.
80. Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep. 2017 Aug 22;7(1):9110.
81. Gou W, Fu Y, Yue L, Chen G, Cai X, Shuai M, et al. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. medRxiv. 2020 Jan 1;2020.04.22.20076091.
82. Chen Y, Gu S, Chen Y, Lu H, Shi D, Guo J, et al. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut [Internet]. 2021 Apr 7 [cited 2021 May 1]. Available from: https://gut.bmj.com/content/early/2021/04/07/gutjnl-2021-324090
83. Ward DV, Bhattarai S, Rojas-Correa M, Purkayastha A, Holler D, Da Qu M, et al.The intestinal and oral microbiomes are robust predictors of covid-19 severity the main predictor of covid-19-related fatality. medRxiv. 2021 Jan 1;2021.01.05.20249061.
84. Mukhtar K, Qassim S, Al Qahtani SA, Danjuma MI-M, Mohamedali M, Farhan HA, et al. A randomized trial on the regular use of potent mouthwash in COVID-19 treatment. medRxiv. 2021 Jan 1;2020.11.27.20234997.
85. COVID-19 has caused 6.9 million deaths globally, more than double what official reports show. Institute for Health Metrics and Evaluation. 2021. Available from:
http://www.healthdata.org/news-release/covid-19-has-caused-69-million-deaths globally-more-double-what-official-reports-show
86. Severe Acute Respiratory Syndrome (SARS) - OMS. Available from: https://www.who.int/westernpacific/health-topics/severe-acute-respiratory-syndrome
87. Middle East respiratory syndrome coronavirus (MERS-CoV) - OMS. Available from: https://www.who.int/westernpacific/health-topics/middle-east-respiratory-syndrome coronavirus-mers
88. Wilder-Smith A. COVID-19 in comparison with other emerging viral diseases: risk of geographic spread via travel. Trop Dis Travel Med Vaccines. 2021 Jan 31;7(1):3.
89. Liu J, Li Y, Liu Q, Yao Q, Wang X, Zhang H, et al. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov. 2021 Mar 23;7(1):1–4.
90. Alene M, Yismaw L, Assemie MA, Ketema DB, Mengist B, Kassie B, et al. Magnitude of asymptomatic COVID-19 cases throughout the course of infection: A systematic review and meta-analysis. PLOS ONE. 2021 Mar 23;16(3):e0249090.
91. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Ann Intern Med. 2020 Sep 1;173(5):362–7.
92. Johansson MA, Quandelacy TM, Kada S, Prasad PV, Steele M, Brooks JT, et al. SARS-CoV-2 Transmission From People Without COVID-19 Symptoms. JAMA Netw Open. 2021 Jan 7;4(1):e2035057.
93. Mir D, Rego N, Resende PC, Tort F, Fernández-Calero T, Noya V, et al. Recurrent Dissemination of SARS-CoV-2 Through the Uruguayan–Brazilian Border. Front Microbiol [Internet]. 2021 [cited 2021 Jun 4];12. Available from:
https://www.frontiersin.org/articles/10.3389/fmicb.2021.653986/full
94. Elizondo V, Harkins GW, Mabvakure B, Smidt S, Zappile P, Marier C, et al. SARS-CoV 2 genomic characterization and clinical manifestation of the COVID-19 outbreak in Uruguay. Emerg Microbes Infect. 2021 Dec;10(1):51–65.
95. Salazar C, Díaz-Viraqué F, Pereira-Gómez M, Ferrés I, Moreno P, Moratorio G, et al. Multiple introductions, regional spread and local differentiation during the first week of COVID-19 epidemic in Montevideo, Uruguay. bioRxiv. 2020 May 10;2020.05.09.086223.
96. Salazar C, Costabile A, Ferrés I, Perbolianachis P, Pereira-Gómez M, Simón D, et al. Case Report: Early Transcontinental Import of SARS-CoV-2 Variant of Concern 202012/01 (B.1.1.7) From Europe to Uruguay. Front Virol [Internet]. 2021 [cited 2021 Jun 4];1. Available from:
https://www.frontiersin.org/articles/10.3389/fviro.2021.685618/full
97. Cheng VCC, Lau SKP, Woo PCY, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007 Oct;20(4):660–94.
98. Shi W, Gao GF. Emerging H5N8 avian influenza viruses. Science. 2021 May 21;372(6544):784–6.
99. Pittaluga L, Deana A. Evidence-Based Policies in Uruguay Are Successful for Tackling COVID-19. Open J Polit Sci. 2020 Dec 2;11(1):21–33.
100. Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci. 2021 Jan 12;28(1):9.
Publicado
2022-02-22
Cómo citar
MANTA, B., Sarkisian, A., GARCIA FONTANA, B., & PEREIRA PRADO, V. (2022). Fisiopatología de la enfermedad COVID-19. Odontoestomatología, 24(39), 1-19. https://doi.org/10.22592/ode2022n39e312
Sección
Actualización

Artículos más leídos del mismo autor/a

Nota: Este módulo requiere de la activación de, al menos, un módulo de estadísticas/informes. Si los módulos de estadísticas proporcionan más de una métrica, selecciona una métrica principal en la página de configuración del sitio y/o en las páginas de propiedades de la revista.