Resumo
Objetivo: Avaliar o efeito remineralizante, bactericida e de pigmentação produzido por uma solução de fluoreto de sódio com nanopartículas de prata em comparação com o tratamento com Diamino Fluoride da marca SDI. Foram utilizados 40 dentes extraídos, desmineralizados com ácido fosfórico, depois colocados topicamente com Diamino Fluoreto e experimentalmente colocados em dois lados do mesmo dente e armazenados em saliva artificial a 37°C. A mineralização foi medida com o DIAGNOdent2095 (Kavo) sem tratamento e após a aplicação em 1 e 24 horas, 7 e 14 dias. A pigmentação foi comparada por meio de fotografias de microscópio estéreo. Os halos de inibição bacteriana foram testados em culturas de amostras de lesões cariosas de crianças em ágar salivarius e ágar tomate. Os resultados mostram uma remineralização total das amostras em ambos os tratamentos sem diferença estatística, com semelhança de inibição bacteriana, ligeiramente superior no Flúor Diamina em ágar salivarius. As áreas tratadas com o fluoreto experimental não apresentam pigmentação clínica, 75% das áreas tratadas com o fluoreto diamina apresentam pigmentação escura evidente. Em conclusão, o desempenho remineralizante e bactericida do fluoreto experimental é competente sem o efeito de pigmentação, tornando-o uma alternativa viável.
Referências
Gao SS, Zhao IS, Hiraishi N, et al. Clinical Trials of Silver Diamine Fluoride in Arresting Caries among Children: A Systematic Review. JDR Clinical & Translational Research. 2016;1(3):201-210. doi:10.1177/2380084416661474
Crystal YO, Niederman R. Silver Diamine Fluoride Treatment Considerations in Children’s Caries Management. Pediatr Dent. 2016 Nov 15;38(7):466-471. https://pmc.ncbi.nlm.nih.gov/articles/PMC5347149/
Moraes G, Zambom C, Siqueira WL. Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel). 2021 Jul 30;14(8):752. doi: 10.3390/ph14080752
Besinis A, de Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology [Internet]. 2014 Feb;8(1):1–16. https://www.tandfonline.com/doi/pdf/10.3109/17435390.2012
.742935
Asghar M, Yahya R, Yap AUJ, Azzahari AD, Omar RA. Incorporation of Green Capping agents to reduce silver-mediated dentine staining. Caries Res. 2022; 56 (3): 149–160. https://doi.org/10.1159/000525505
Mulder R, Potgieter N, Noordien N. Penetration of SDF and AgF from the infected dentine towards the unaffected tooth structure. Front Oral Health. 2023 Dec 11;4:1298211. doi: 10.3389/froh.2023.1298211
Zhao IS, Mei ML, Seneviratne CJ, Lo ECM, Chu CH. Effect of silver diamine fluoride and potassium iodide treatment on secondary caries prevention and tooth discolouration in cervical glass ionomer cement restoration. Int J Mol Sci. 2017; 18 (2): 340. https://doi.org/10.3390/ijms18020340
Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HHK. Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dental Materials [Internet]. 2013 Apr 1;29(4):462–72. https://www.sciencedirect.com/science/article/abs/pii/S0109564113000158?via%3Dihub
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules 2015; 20(5): 8856-74. https://doi.org/10.3390/molecules20058856
Rai M, Yadav A, Gade A, Gaikwad S, Mantri A, Kedarnath G, et al. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009; 27 (1): 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
Kim B, Park CS, Hwang IS, Kim YU, Choi K, Lee J, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol. 2010; 44 (19): 7509-15. https://doi.org/10.1021/es101565j
Yazdanian M, Rostamzadeh P, Rahbar M, Alam M, Abbasi K, Tahmasebi E, et al. The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorganic Chemistry and Applications. 2022(1):2311910. https://doi.org/10.1155/2022/2311910
Mandhalkar R, Paul P, Reche A. Application of Nanomaterials in Restorative Dentistry. Cureus. 2023 Jan 14;15(1):e33779. doi: 10.7759/cureus.33779.
Fostercomp.com. Foster Corporation North Las Vegas [Citado el 19 de junio de 2024] Recuperado de: https://www.fostercomp.com/custom-compounds/antimicrobial-formulations/?matchtype=p&network=g&devi-
ce=-c&keyword=silver%20ion%20antibacterial&campaign=14991849597&adgroup=125919744862&gad_sour-
ce=1&gclid=EAIaIQobChMI9Z2tlvnAhgMVKRWtBh0nLgAGEAAYASAAEgJCMfD_BwE
Andueza I, Sánchez L, Calo K. Caracterización de un enjuague bucal mucoadhesivo con nanopartículas de plata. Revista de la Facultad de Farmacia [Internet]. 2023 Dec 26; 86(3). Available from: http://saber.ucv.ve/ojs/index.
php/rev_ff/article/view/27615
Cardoso P. Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Revista del Hospital de Niños (B. Aires). 2016; 58 (260): 19-27. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanoparti%CC%81culas-de-plata.pdf
Favaro JC, Poli RC, Detomini TR, Guiraldo RD, Maia LP, Lopes MB, et al. Anticaries Agent Based on Silver Nanoparticles and Fluoride: Characterization and Biological and Remineralizing Effects—An In Vitro Study. Int J Dent. 2022; 2022 (1): 9483589. https://doi.org/10.1155/2022/9483589
Wang YS, Shi YX, Liu QQ, Hu LQ, Ma FB, Zhang JR, et al. Synthesis of novel silver-loaded clay AgF@Hec for the prevention of dental caries in vitro. Biomed Mater (Bristol). 2024; 19(4): 10. https://doi.org/10.1088/1748-605X/ad51c1
Salas-López EK, Pierdant-Pérez M, Hernández-Sierra JF, Ruíz F, Mandeville P, Pozos-Guillén AJ. Effect of Silver Nanoparticle-Added Pit and Fissure Sealant in the Prevention of Dental Caries in Children. J Clin Pediatr Dent. 2017;41(1):48-52. doi: 10.17796/1053-4628-41.1.48
Mallineni SK, Sakhamuri S, Kotha SL, AlAsmari ARGM, AlJefri GH, Almotawah FN, Mallineni S, Sajja R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering. 2023; 10(3):327. https://doi.
org/10.3390/bioengineering10030327
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16 (10): 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
Sáenz MGP. Nanopartículas de plata contra bacterias presentes en biofilm dental de pacientes pediátricos. Rev ADM Organo Of Asoc Dent Mex. 2022; 79 (4): 198-203. doi: 10.35366/106912
Espinosa-Cristóbal LF, Holguín-Meráz C, Zaragoza-Contreras EA, Martínez-Martínez RE, Donohue-Cornejo A, Loyola-Rodríguez JP, et al. Antimicrobial and Substantivity Properties of Silver Nanoparticles against Oral Microbiomes Clinically Isolated from Young and Young-Adult Patients. Journal of Nanomaterials [Internet]. 2019 Jan 1;2019(1):3205971. https://doi.org/10.1155/2019/3205971
Hernández-Sierra JF, Ruíz F, Castanedo-Cázares JP, Martinez-Ruiz V, Mandeville P, Pierdant-Pérez M, Gordillo-Moscoso A, Pozos-Guillén Ade J. In vitro determination of the chromatic effect of a silver nanoparticles solution linked to the gantrez S-97 copolymer on tooth enamel. J Clin Pediatr Dent. 2010 Fall;35(1):65-8. doi: 10.17796/jcpd.35.1.f466p70100253643.

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Miriam Marín-Miranda, María Lilia Juárez -López, Rosita Palma Pardínez